skip to main content


Search for: All records

Creators/Authors contains: "Orland, Henri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new algorithm is presented to compute nonrigid, possibly partial comparisons of shapes defined by unstructured triangulations of their surfaces. The algorithm takes as input a pair of surfaces with each surface given by a distinct and unrelated triangulation. Its goal is to define a possibly partial correspondence between the vertices of the two triangulations, with a cost associated with this correspondence that can serve as a measure of the similarity of the two shapes. To find this correspondence, the vertices in each triangulation are characterized by a signature vector of features. We tested both the LD-SIFT signatures, based on the concept of spin images, and the wave kernel signatures obtained by solving the Shrödinger equation on the triangulation. A cost matrix C is constructed such that C(k,l) is the norm of the difference of the signature vectors of vertices k and l. The correspondence between the triangulations is then computed as the transport plan that solves the optimal transport or optimal partial transport problem between their sets of vertices. We use a statistical physics approach to solve these problems. The presentation of the proposed algorithm is complemented with examples that illustrate its effectiveness and manageable computing cost. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. The Gromov-Wasserstein (GW) formalism can be seen as a generalization of the optimal transport (OT) formalism for comparing two distributions associated with different metric spaces. It is a quadratic optimization problem and solving it usually has computational costs that can rise sharply if the problem size exceeds a few hundred points. Recently fast techniques based on entropy regularization have being developed to solve an approximation of the GW problem quickly. There are issues, however, with the numerical convergence of those regularized approximations to the true GW solution. To circumvent those issues, we introduce a novel strategy to solve the discrete GW problem using methods taken from statistical physics. We build a temperature-dependent free energy function that reflects the GW problem’s constraints. To account for possible differences of scales between the two metric spaces, we introduce a scaling factor s in the definition of the energy. From the extremum of the free energy, we derive a mapping between the two probability measures that are being compared, as well as a distance between those measures. This distance is equal to the GW distance when the temperature goes to zero. The optimal scaling factor itself is obtained by minimizing the free energy with respect to s. We illustrate our approach on the problem of comparing shapes defined by unstructured triangulations of their surfaces. We use several synthetic and “real life” datasets. We demonstrate the accuracy and automaticity of our approach in non-rigid registration of shapes. We provide numerical evidence that there is a strong correlation between the GW distances computed from low-resolution, surface-based representations of proteins and the analogous distances computed from atomistic models of the same proteins. 
    more » « less
  3. We present a new method to sample conditioned trajectories of a system evolving under Langevin dynamics based on Brownian bridges. The trajectories are conditioned to end at a certain point (or in a certain region) in space. The bridge equations can be recast exactly in the form of a non-linear stochastic integro-differential equation. This equation can be very well approximated when the trajectories are closely bundled together in space, i.e., at low temperature, or for transition paths. The approximate equation can be solved iteratively using a fixed point method. We discuss how to choose the initial trajectories and show some examples of the performance of this method on some simple problems. This method allows us to generate conditioned trajectories with a high accuracy. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)